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Abstract

The rapid integration of large language models
(LLMs) into software development, exemplified by
tools like GitHub Copilot, has enhanced produc-
tivity but raised concerns about their substantial
energy consumption. This study introduces a Vi-
sual Studio Code (VS Code) extension designed
to estimate and visualize the energy use and car-
bon dioxide equivalent (CO2eq) emissions of AI-
generated code suggestions in real time. Focusing
on GitHub Copilot, the extension employs a token-
based approach, leveraging publicly available data
to approximate energy costs (e.g., 2.16 J/token for
GPT-4o) and emissions (e.g., 2.14 × 10 gCO2eq/J).
By embedding these metrics into the integrated de-
velopment environment (IDE) workflow via status
bar updates and detailed logging, the tool reveals
the environmental footprint of AI assistance, with
energy estimates ranging from 43.20 J for simple
loops to 745.20 J for complex neural network im-
plementations. While demonstrating the feasibility
of such monitoring, limitations include reliance on
aggregated data and lack of model-specific energy
profiles beyond GPT-4o. This work underscores
the need for transparency in AI energy use and lays
the groundwork for sustainable coding practices by
balancing LLM benefits with their ecological im-
pact.

1 Introduction
The rise of artificial intelligence (AI), particularly LLMs,
has introduced unprecedented capabilities to computing,
but at a significant energy cost. A prominent example is
ChatGPT, developed by OpenAI, which exemplifies the
energy-intensive nature of LLMs. Estimates of ChatGPT’s
energy consumption per query vary widely, ranging from 0.3
watt-hours (Wh) [1] to 2.9 Wh [2]. The higher estimate, from
a 2023 study by de Vries, suggests that a single ChatGPT
query consumes nearly ten times the energy of a typical
Google search, which requires approximately 0.3 Wh [3].
This disparity underscores the growing energy footprint of
AI as its applications expand in scale and complexity. This
energy intensity, often concealed within power-hungry data
centers, remains largely invisible to users, making it difficult
to grasp the environmental and economic toll of AI-driven
tools. While research has started to quantify AI’s energy
footprint, few studies explore its implications for developer
tools or offer practical solutions. This gap inspires our study,
which aims to shed light on LLM energy use in IDEs by
quantifying and visualizing it in real time.

In software development, LLMs have become increas-
ingly prevalent, driven by tools like GitHub Copilot, an
AI-powered code completion and generation tool developed
by GitHub and OpenAI. Integrated into various IDEs,
GitHub Copilot enables users to select from multiple
LLMs—specifically ChatGPT-4o, Claude 3.5 Sonnet, and

Gemini 2.0 Flash—to generate code tailored to their needs.
A 2023 GitHub survey found that 92% of U.S.-based devel-
opers used AI-powered coding tools at least occasionally,
leveraging them for tasks such as code generation, autocom-
pletion, and debugging [4]. Similarly, the Stack Overflow
2023 Developer Survey reported that 70% of professional
developers had experimented with AI tools, including LLMs,
with 43% incorporating them into their weekly or daily
workflows [5]. These findings highlight the rapid adoption of
LLMs, transforming how developers approach coding tasks
and boosting productivity.

This paper proposes a novel solution: an IDE extension
that embeds real-time energy usage metrics for LLMs. By
making energy consumption visible to developers, this tool
aims to foster awareness and encourage sustainable coding
practices. The study focuses on designing and implementing
this extension to measure the energy consumed by LLMs per
user request during code generation. Key takeaways from
this work include: (1) the feasibility of using a token-based
approach to approximate server-side energy use, (2) the
successful integration of real-time energy metrics into a
widely used IDE, and (3) the demonstration that even simple
AI queries contribute meaningfully to energy consumption.
These findings highlight the potential for practical tools to
bridge the gap between AI innovation and environmental
responsibility, while also revealing the need for greater
transparency from LLM providers to refine such estimations.

The paper is organized as follows. Section 2 provides
background on AI energy consumption and its adoption in
software development. Section 3 outlines the methodology
employed in this study. Sections 4 and 5 present the results
and a discussion of findings, culminating in conclusions in
Section 6.

The code for the extension can be found in the follow-
ing GitHub repository.

2 Background
This section provides foundational context on the key tech-
nologies and concepts relevant to understanding the energy
consumption of AI-assisted software development, setting the
stage for the methodology described later.

Available Code Editors
The software development landscape features a diverse range
of code editors and IDEs. Prominent examples include Visual
Studio, VS Code, the JetBrains suite (e.g., PyCharm, IntelliJ
IDEA), Sublime Text, Android Studio, and Xcode. Selecting
an appropriate IDE for research involving extension devel-
opment requires considering factors such as cross-platform
compatibility, underlying architecture, richness of the plugin
ecosystem, community adoption size, and active maintenance
status. Architecturally, these environments vary significantly:
Visual Studio is historically tightly integrated with the .NET
framework and Windows ecosystem [10]; VS Code utilizes
the Electron framework, enabling a cross-platform, modular,
and relatively lightweight structure [8]; the JetBrains IDEs
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are primarily Java-based, built upon the IntelliJ platform [11];
Sublime Text employs a custom, performance-optimized pro-
prietary engine [12]; while Xcode and Android Studio are
deeply integrated with the Apple and Google development
platforms, respectively [13, 14]. These architectural differ-
ences influence performance, extensibility, and suitability for
specific development tasks and research goals.

Visual Studio Code
VS Code was chosen to create the energy monitoring ex-
tension for this study. This decision was based on several
key advantages of VS Code. First, compared to Visual Stu-
dio or IntelliJ-based IDEs, VS Code is more lightweight and
runs reliably on Windows, macOS, and Linux. Second, be-
cause it’s built on the Electron framework, it makes develop-
ing extensions using common web technologies (JavaScript
or TypeScript) easier. VS Code also offers a large market-
place with many extensions, showing it has a large and ac-
tive support community. Its system for extensions, using the
Language Server Protocol (LSP) and a well-documented VS
Code API [9], offered an easier way to track the necessary
editor events compared to the possibly more complex plugin
systems of other IDEs. Microsoft and a strong open-source
community actively maintain VS Code, so it is continuously
updated. Finally, many developers use it, especially for web
development and scripting, which makes our results relevant
to a broad audience.

AI Assistant
Visual Studio Code itself does not include native AI-driven
code generation features; such functionality necessitates the
installation of third-party extensions. In selecting an AI as-
sistant for integration and monitoring, two prominent options
were evaluated: GitHub Copilot and the open-source alter-
native, CodeGPT. While both provide core AI-assisted cod-
ing capabilities—including code completion, generation from
prompts, and debugging support—they exhibit differences in
performance characteristics, the quality of integration with
VS Code, and underlying resource requirements. Following
a comparative assessment, GitHub Copilot was chosen for
this study. The rationale for this selection was its demon-
strably superior contextual accuracy in generating relevant
code suggestions and its seamless, robust integration within
the VS Code environment. This aligns directly with the re-
search goal of measuring energy consumption within a real-
istic and widely adopted developer workflow. Furthermore,
while GitHub Copilot offers access to various LLMs (like
Claude and Gemini alongside GPT models), our energy es-
timation focuses specifically on ChatGPT-4o because pub-
licly available data allowed us to approximate both its energy
consumption profile and its likely tokenizer Tiktoken. Simi-
lar public data for approximating these factors was not read-
ily available for the Claude or Gemini models offered within
Copilot at the time of this research.

3 Methodology
This section describes the methodology used to monitor and
estimate the energy consumption of AI-generated code sug-
gestion within a modern IDE. We begin by outlining the over-

all system architecture, including the mechanisms for identi-
fying AI-Generated text and capturing code changes. The de-
tail of the approach used for token counting and the estima-
tion of energy and CO2 equivalent emissions based on those
tokens. Finally, there will be an explanation how this data is
presented to the user in real time through the IDE interface,
and how it is persistently logged for offline analysis.

3.1 Energy and CO2 Equivalent Emissions
Estimation Framework

Since GitHub generate performs computations server-side,
direct energy measurement is impractical. Instead, we esti-
mate energy consumption and CO2 equivalent emissions us-
ing a token-based approach, leveraging the number of tokens
generated as a proxy for computational effort.

Energy Consumption per Token
Our energy estimation is based on a 2025 Epoch AI report [1],
which analyzes ChatGPT-4o, one of three models in GitHub
generate. Lacking public data for Claude 3.5 Sonnet and
Gemini 2.0 Flash, we focus solely on ChatGPT-4o. The re-
port estimates 0.3 Wh per query for a 500-token response.
Converting to joules (1Wh = 3600 J):

Energy per token =
0.3× 3600

500
≈ 2.16 J (1)

CO2 Equivalent Emissions per joule
CO2 equivalent emissions are derived from Microsoft’s 2025
Environmental Sustainability Report [7]. In 2023, Mi-
crosoft’s data centers consumed 17.8 TWh, with Scope 2
emissions of 1.365 million metric tons of CO2eq. Convert-
ing emissions to grams (1metric ton = 106 g) and electricity
to kilowatt-hours (1TWh = 109 kWh):

Carbon intensity =
1.365× 1012

17.8× 109
≈ 76.69

gCO2eq
kWh

(2)

The result from Equation 2, rounded to 77 gCO2eq/kWh,
we convert to grams per joule (1 kWh = 3.6× 106 J):

gCO2eq/J =
77

3.6× 106
≈ 2.14× 10−5 gCO2eq

J
(3)

The result of Equation 3 provides a consistent basis for
linking energy to emissions.

3.2 Extension Implementation
We developed a lightweight VS Code extension to apply this
framework, integrating energy and CO2eq estimation into de-
velopers’ workflows.

Design and Integration
The extension was implemented as a VS Code plugin,
using the official extension API to monitor and respond to
document-level changes. The core design centers around the
detection of AI-generated content, specifically suggestions
accepted from generate. This is achieved by maintaining
two internal buffers. The first buffer store the document
state before the suggestion and another for the state after the



suggestion is accepted.

To identify a generate suggestion, the extension listens
to the update event in the buffer. Changes that involve
multiple lines or span non-trivial character ranges are treated
as potential AI insertions. These conditions are evaluated
through simple heuristics (change spans multiple lines,
or exceeds a minimum token threshold) to reduce noise
from typical manual edits. When a potential suggestion is
detected, the extension stores the current document as the
”before” buffer and wait for the final form of the change.
This before, after buffer mechanism give the extension
to isolate the inserted code and differentiate it from user
input. The inserted code passed tokenization and energy
estimation. The current mechanism is selected to minimize
the false positives and ensuring that the user-written edits
are not mistakenly included in the analysis ensuring that
user-written edits are not mistakenly included in the analysis.
Specifically, the extension filters out changes shorter than
three tokens and single line edits, which are common when
developers type manually. These heuristics are based on
structural characteristics of AI suggestions.

Tokenization and Energy Calculation
To compute the energy usage collected from the buffer,
the Tiktoken library was used. The Tiktoken library is an
OpenAI-released official tokenizer [6]. It was used with the
tokenizer model used by ChatGPT-4o to ensure consistency
with how AI-generated suggestion calculation. Tokenization
is performed on the diffed text. The extension uses encoding
to obtain a model-specific encoder, The number of tokens re-
turned is used as the basis for energy estimation. The fixed
conversion rate of 2.16 joules per token was taken to estimate
the energy used to generate this suggestion. This number
is based on research in energy modeling of LLM inference.
Furthermore, a CO2eq emissions estimate is calculated using
a constant factor of 0.0000214 grams of CO2eq per joules.
Both estimates are stored and updated across all suggestions
accepted during the session.

Real-Time Feedback
The extension provides energy usage feedback directly with
the editor through the VS Code status bar. Each time a AI
suggestion is accepted, the plugin updates the energy counter
shown in the lower right corner of the interface. This status
bar displays the total energy consumed during the session. To
provide more expanded feedback, a tool tip is also attached
to the status bar elements. When hovered over, it displays the
amount of energy consumed by the most recent suggestion,
as well as the cumulative totals.

Logging for Post-Hoc Analysis
Each accepted generate suggestion is logged to a local file
within the user’s workspace. For every recorded event, the
log captures the timestamp of the edit, the name of the af-
fected file, the inserted code suggestion, the number of tokens
generated, the energy consumed in joules and the cumulative
energy. This logging mechanism allows for offline analysis of
energy usage and enables aggregation of results across multi-
ple sessions or users.

4 Results
In this section, we present the features of our VS Code exten-
sion and provide examples of how it operates in practice. The
primary purpose of our extension is to estimate the energy
consumption of LLMs within an IDE and display this infor-
mation to users in real-time. This allows developers to gain
insights into the environmental impact of AI-assisted code
generation directly within their workflow.

Upon activation within VS Code, the extension initializes
the energy consumption counter displayed in the status bar to
0.0 joules (J), as shown in Figure 1. This indicates that no
code generation requests monitored by the extension have yet
been completed in the current session.

Figure 1: VS Code status bar showing the initial energy counter
reading (0.0 J) upon extension activation.

When a user accepts a code suggestion generated by
GitHub Copilot, the extension intercepts the inserted code,
calculates the number of tokens (using the methodology de-
scribed in Section 3), estimates the corresponding energy
consumption, and updates the cumulative total displayed in
the status bar.

Example 1: Estimating Energy for a Simple
Function

To illustrate the core functionality, consider a request for
GitHub Copilot to generate a standard Fibonacci sequence
function. The code generated for this request is displayed in
Figure 2. Based on the token count of this generated code
snippet, the extension calculated an estimated energy con-
sumption of 136.08 J. This demonstrates how the extension
quantifies the energy impact of a typical code generation task.

Figure 2: Generated code for Fibonacci function, with the status bar
indicating the corresponding cumulative energy estimate (example
shows 136.08 J for this request).



Example 2: Energy Variation with Request
Complexity
The estimated energy consumption varies based on the com-
plexity and length (i.e., token count) of the generated code.
To demonstrate this, two distinct prompts were issued to
GitHub Copilot:

Prompt 1: A Basic For-loop A request for a simple for-
loop structure resulted in the code and corresponding energy
estimate shown in Figure 3. The relatively short code snippet
resulted in a lower estimated energy consumption of 43.20 J.

Figure 3: Generated code for a basic for-loop request, with the status
bar indicating the corresponding cumulative energy estimate (exam-
ple shows 43.20 J for this request).

Prompt 2: A Complex Neural Network Implementation
A request for a more complex neural network implementation
yielded a significantly longer code block, as shown in Fig-
ure 4. Correspondingly, the estimated energy consumption
for generating this code was substantially higher at 745.20 J,
reflecting the greater number of tokens generated.

These examples illustrate the extension’s ability to provide
real-time feedback that correlates the estimated energy cost
with the amount and complexity of code generated by the AI
assistant.

5 Discussion
This study successfully demonstrated the feasibility of
developing an IDE extension to provide real-time estimations
of energy consumption and CO2 equivalent emissions
associated with AI-driven code generation tools, specifically
focusing on GitHub Copilot within the Visual Studio Code
environment. By leveraging publicly available data on LLM
energy use per token and data center carbon intensity, the
extension translates the abstract computational cost of AI
suggestions into tangible metrics displayed directly within
the developer’s workflow. The results confirm the initial
premise: even seemingly minor AI assistance requests incur
a measurable energy footprint. Furthermore, the examples
presented in the Results section (Section 4) illustrate a clear
correlation, showing that longer generated code snippets,
corresponding to higher token counts, result in higher esti-
mated energy consumption. This contributes incrementally
but cumulatively to the overall environmental impact of
software development.

Figure 4: Generated code for a neural network implementation re-
quest, with the status bar indicating the higher cumulative energy
estimate (example shows 745.20 J for this request).

Acknowledging the broader context requires discussing
potential trade-offs related to overall energy usage and code
quality. Our focus is specifically on the energy consumed
by the LLM during the code generation process. A second,
distinct aspect to consider for overall software sustainability
is the energy efficiency of the generated code itself during
execution. Complex trade-offs exist here: code requiring
more tokens (and thus more generation energy) might
execute significantly faster, consuming less energy over its
lifetime compared to shorter but less optimized alternatives.
Conversely, while smaller, potentially less energy-intensive
LLMs might generate code faster, the quality and correctness
of that code could be lower, potentially requiring multiple
re-generations or extensive manual debugging, which could
negate initial energy savings or even increase overall effort
and consumption. Evaluating the runtime efficiency of the
output code is a separate challenge and outside the direct
scope of this extension’s measurement capabilities. Notably,
few studies directly compare the energy cost of LLM code
generation versus the execution energy cost of the resulting
code; research on this specific trade-off is still emerging.

5.1 Limitations
Dependency on External and Aggregated Data
The core limitation based on the reliance on estimations de-
rived from publicly available, aggregated data rather than di-



rect, real-time measurements from the service infrastructure.
Accuracy is fundamentally constrained by the general lack of
transparency from LLM providers regarding their operational
energy footprints. Our calculations depend on third-party re-
ports for average energy-per-token (derived from query-level
data in [1]) and overall data center carbon intensity [7]. Also,
this data doesn’t account for the specific hardware (e.g., GPU
type, efficiency) utilized for a given inference, network la-
tency impacts, cooling system efficiency (PUE), or other dy-
namic factors influencing actual energy draw per request.
Consequently, the presented values should be interpreted as
approximations rather than exact measurements.

Model Specificity and Tokenizer Uncertainty
The energy estimation currently uses parameters based solely
on data available for the ChatGPT-4o model. GitHub Copi-
lot integrates various LLMs, and energy consumption pro-
files for other models (e.g., Claude, Gemini variants) were
not publicly available. This restricts the accuracy when users
select models other than the one characterized. Furthermore,
the precise tokenization algorithms used by different LLM
providers can vary. While we assume the use of tiktoken [6]
for OpenAI models, a different tokenizer employed by an-
other provider would yield a different token count for the
same text, directly impacting the energy calculation’s accu-
racy for suggestions generated by non-OpenAI models. Our
methodology cannot currently adapt to these undisclosed,
model-specific tokenizers.

Lack of Official API and Logging Reliability
The lack of an official Copilot API from Microsoft presented
development challenges, so the Copilot suggestions have to
be pulled directly through VS Code’s API calls making the
creation of an extension necessary. This indirect method
proved workable but can be less reliable than direct API in-
tegration, occasionally failing to capture the complete text of
very large or rapidly streamed suggestions. This may lead
to underestimations of token counts and, therefore, energy
consumption, particularly for complex, multi-line code gen-
erations. Integration with an official API, if made available,
would significantly improve data capture reliability.

5.2 Future Improvements
Incorporating Input Processing Energy Costs
A primary limitation of the current estimation is its focus
solely on output tokens generated by the LLM. However, pro-
cessing the input prompt and context provided by the user of-
ten constitutes a significant portion of the computational load,
especially with large context windows common in modern
development workflows. A key future direction is to extend
the energy estimation model to include the energy cost associ-
ated with processing these input tokens. This requires access
to currently unavailable server-side data for specific LLM in-
ference processes. If such data emerges, we could adapt the
extension to multiply input token counts—obtained via tikto-
ken - by a corresponding energy-per-token value, providing a
more comprehensive energy profile for each suggestion.

Expanding Model Support and Specificity
The current implementation relies on energy data specific to
ChatGPT-4o. To improve accuracy and relevance across the

diverse LLMs offered by GitHub Copilot (and potentially
other AI coding assistants), future versions should incorpo-
rate model-specific energy profiles and tokenizers as data be-
comes available. This would allow the extension to dynami-
cally adjust its calculations based on the LLM selected by the
user or detected automatically.

Enhanced Visualization and Reporting
Beyond the current status bar display, more sophisticated vi-
sualization and reporting features could greatly enhance user
understanding and engagement. Potential improvements may
include:

• Granular Aggregation: Displaying energy consumption
aggregated per-file, per-directory, or per-project, helping
developers identify energy ”hotspots” within their code-
base interactions.

• Historical Tracking: Implementing logging and visu-
alization of energy usage trends over time (e.g., daily
or weekly summaries), allowing developers to monitor
their cumulative impact.

• Dedicated UI Panel: Creating a dedicated view or panel
within VS Code to present these richer visualizations
and reports, rather than relying solely on the status bar
and tooltips.

Official API Integration
Should an official API for GitHub Copilot become available,
refactoring the extension to leverage this API would be a pri-
ority. This would likely resolve current inaccuracies in cap-
turing generated code snippets and provide a more robust and
reliable foundation for measurement.

User Studies and Behavioral Analysis
To understand the real-world impact of this tool, conducting
user studies would be invaluable. Such studies could assess
how developers perceive and interact with the real-time en-
ergy feedback, whether it influences their usage patterns of
AI assistants (e.g., prompt strategies, acceptance frequency),
and gather qualitative feedback for further refinement of the
tool’s design and features.

6 Conclusion
This study developed a VS Code extension to estimate and
visualize the energy consumption and CO2eq emissions of
AI-driven code generation, focusing on GitHub Copilot.
Key takeaways include the feasibility of using a token-
based approach to approximate server-side energy use, the
successful integration of real-time energy metrics into a
widely used IDE, and the demonstration that even simple
AI queries contribute meaningfully to energy consumption.
The extension empowers developers with visibility into the
environmental impact of their tools, revealing, for instance,
that complex requests like neural network implementations
consume significantly more energy than basic loops. How-
ever, the research also underscores the challenges of precise
estimation due to limited transparency from LLM providers
and the absence of an official Copilot API, which restricts
accuracy to rough estimates.



These findings highlight the urgent need for greater in-
dustry openness regarding AI energy profiles to enable
sustainable software development practices. Future efforts
should prioritize securing detailed energy data, incorporating
input token processing, and refining integration through
direct API access if available. By addressing these gaps, this
tool can evolve into a more robust instrument for promoting
energy-conscious coding. Ultimately, this work serves as a
stepping stone toward balancing the productivity benefits of
LLMs with their environmental costs, urging the computing
community to prioritize sustainability alongside innovation.
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